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Dispersionless bands, such as Landau levels, serve as a good starting point for obtaining interesting corre-
lated states when interactions are added. With this motivation in mind, we study a variety of dispersionless
�“flat”� band structures that arise in tight-binding Hamiltonians defined on hexagonal and kagome lattices with
staggered fluxes. The flat bands and their neighboring dispersing bands have several notable features: �a� flat
bands can be isolated from other bands by breaking time-reversal symmetry, allowing for an extensive degen-
eracy when these bands are partially filled; �b� an isolated flat band corresponds to a critical point between
regimes where the band is electron-like or hole-like, with an anomalous Hall conductance that changes sign
across the transition; �c� when the gap between a flat band and two neighboring bands closes, the system is
described by a single spin-1 conical-like spectrum, extending to higher angular momentum the spin-1/2 Dirac-
like spectra in topological insulators and graphene; �d� some configurations of parameters admit two isolated
parallel flat bands, raising the possibility of exotic “heavy excitons”; and �e� we find that the Chern number of
the flat bands, in all instances that we study here, is zero.
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I. INTRODUCTION

One of the reasons why dispersionless �or flat� bands are
interesting is that they accommodate, when partially filled,
an exponentially large number of states. This macroscopic
degeneracy can be lifted when interactions are added, often
leading to rich strongly correlated phenomena. The best
known example is the fractional quantum Hall effect, which
arises from the degeneracy within flat Landau bands for par-
ticles in a magnetic field.

In addition to the Landau problem, other models with flat
bands have been studied at least since the 1970s, such as
amorphous semiconductors.1–3 This system is idealized by a
lattice made up of clusters of sites. Both intercluster and
intracluster hoppings are allowed. From a mathematical
point of view, it turns out that the intracluster hopping term
in the Hamiltonian is a projection operator, leading to the
existence of flat bands.4,5

In the 1980s, flat bands were studied in relation to the
Nielson-Ninomiya theorem6 by Dagotto et al.7 They showed
that it is possible to escape the fermion-doubling problem at
the price of having an extra flat band in the spectrum. In this
way, the low energy degrees of freedom of the theory can be
described as a single Weyl species.

More recently, Ohgushi et al.8 studied flux phases in the
kagome lattice, which is the planar section of ferromagnetic
textured pyrochlores. If the flux is staggered then electrons
accumulate a spin Berry phase as they hop. This system con-
tains isolated flat bands, i.e., they are protected by a gap. On
the other hand, Bergman et al. studied flat bands without a
gap in similar lattices9 not threaded by fluxes. In their mod-
els, a flat band is degenerate with one or more other bands at
a single point, and the touching is topologically protected.
Each of the works above has identified interesting, but seem-
ingly disconnected, properties of flat bands.

The purpose of this paper is to understand the different
types of flat band spectra, the conditions to obtain them, and

the properties that follow. This paper is organized around
five main findings. First, flat bands can be isolated by break-
ing time-reversal symmetry �TRS�. Second, isolated flat
bands can be viewed as critical points. On either side of the
phase boundary the flat band becomes positively or nega-
tively curved, which corresponds to transitioning from a
particle-like to a hole-like band. We also find an anomalous
Hall effect on either side of the transition, whose sign de-
pends on whether the band is electron-like or hole-like.
Third, when the gap between a flat band and its neighboring
bands closes with the flat band in the middle, the system is
described by a single spin-1 conical-like spectrum. This ex-
tends to higher angular momentum the spin-1/2 Dirac-like
spectra in topological insulators and in graphene. Fourth, one
can obtain multiple �parallel� flat bands and we provide a
concrete example of this case. Fifth, we find, for all ex-
amples studied here, that the Chern number of the flat bands
is zero. So as opposed to Landau levels, we get no quantized

(a) (b)

FIG. 1. �Color online� Energy dispersions with staggered flux
phases �+ and �− on the up and down triangles of the kagome
lattice. The dispersion on the left �type I� corresponds to �+=2�
and �−=−� while the dispersion on the right �type II� corresponds
to �+=�−=3� /2.
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Hall conductance for these particular flat bands.
The model with which we will start our analysis is a

simple kagome lattice with a tight-binding interaction and
two staggered fluxes, �+ and �−, on alternating triangles.
Depending on the values of ��, dispersions can be classified
into three types: �I� a flat band touches two linearly dispers-
ing bands at the same point, where the linear bands are remi-
niscent of a “Dirac-like” point, but with spin-1 behavior, �II�
an isolated flat band that is separated from bands above and
below by a gap, and �III� a gapless flat band that touches a
single massive energy band either above or below. The en-
ergy dispersions corresponding to types I and II are plotted in
Fig. 1. Type III has been discussed recently9–11 in hexagonal
and kagome lattices without magnetic flux, and it was found
that in this case the zero gap is protected by topological
arguments.9 Type III has been also shown to exhibit a topo-
logical insulator phase in the presence of spin-orbit
interactions.12 Type II appears when electrons accumulate a
spin Berry phase as they hop from site to site, which is
equivalent to both up and down triangles with the same mag-
netic flux.8 Type I necessitates the staggered fluxes �+��−
that we analyze below.

We will show that the condition for a flat band to occur at
E=0 is �++�−�� �mod 2��. By changing the value of the
fluxes in such a way that their sum differs slightly from �,
the flat band acquires a small curvature, which can be posi-
tive or negative depending on the values of ��. Interestingly,
the band curvature implies that if the Fermi energy is chosen
to be zero, then by tuning the fluxes it is possible to change
the center of the band from an electron-like pocket to a hole-
like pocket. This leads to an inversion of the sign of the
anomalous Hall response.13 Therefore, the flat band condi-
tion �++�−�� �mod 2�� represents a quantum critical
point separating two regions with different anomalous Hall
responses.

Type I is remarkable in that it displays linearly dispersing
modes, akin to those of graphene, but differing in two im-
portant ways. First, the conical points do not appear in pairs
as in graphene, but instead there is only one such point
within the first Brillouin zone �BZ� �see Fig. 1�. Second,
these are not Dirac fermions �this is why it is possible to
evade the doubling problem�, but instead the effective
Hamiltonian in momentum space is of the form H=vF k� ·L� ,
where L� is the spin-1 angular momentum operator �vF is the
Fermi velocity�. The spin-1-type spectrum �like the spin-1/2
Dirac-type spectrum of graphene� can be viewed as a single
quantum spin in a magnetic field, as in Berry’s original work
on quantum phases,14 but with the wave vector k playing the
role of the magnetic field. Type I does not require the break-
ing of TRS. However, we show that a gap can be opened
while leaving the flat band untouched by breaking TRS, and
thus type I is continuously connected to type II. In type II the
degenerate states within the flat band are protected by the
gap at finite temperature and would provide a fertile base to
construct correlated states.

Finally, we will generalize the above results on the
kagome lattice to other lattices by a formulation similar to
Straley,4 but again adding staggered fluxes. As an example,
we take a hexagonal network, similar to graphene, but with

three degrees of freedom at each site. We will consider two
hopping strengths in this case: one for intersite hopping be-
tween nearest neighbors �t� and one on each vertex for intra-
site permutations between the three species �g�. Each permu-
tation will be associated with a flux �� on the two
sublattices of the honeycomb lattice. We will show that the
kagome model can be obtained from this in the limit t�g.
Additionally, we will show that the honeycomb lattice admits
two parallel flat bands that are isolated from each other and
all other bands, which is a feature that the kagome lattice
does not have.

II. FLAT ZERO-MODE BAND IN THE STAGGERED-FLUX
KAGOME LATTICE

Consider the tight-binding Hamiltonian defined on a
kagome lattice, where staggered fluxes �+ and �− are applied
within alternating triangles �“up” and “down” triangles, re-
spectively�, as shown in Fig. 2. For convenience define the
phase factors ��=ei��/3. Let s1= �0,−1�, s2= ��3 /2,1 /2�,
and s3= �−�3 /2,1 /2� be the vectors pointing from the cen-
ters of an up triangle to its three down neighbors and define
dk

ij =e−ik·�si−sj�, with j=1,2 ,3. In momentum space, the
Hamiltonian can be written as

Hk = g� 0 �+ + �−dk
12 �̄+ + �̄−dk

13

�̄+ + �̄−dk
21 0 �+ + �−dk

23

�+ + �−dk
31 �̄+ + �̄−dk

32 0
� , �1�

where g is the hopping strength. The characteristic polyno-
mial for this matrix is

P�E� = − E3 + g2a1�k�E + g3a0�k� , �2�

where

a1�k� = �3 + �̄+�−q�k�� + c.c.,

FIG. 2. The kagome lattice with fluxes �+ and �− on alternating
triangles, which correspond to a flux −��++�−� inside each hexa-
gon. s1,2,3 are vectors pointing from the center of a down triangle to
its three up neighbors.
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a0�k� = ���+
3 + �−

3� + ��+
2�− + �̄+�̄−

2�q�k�� + c.c.,

and q�k�=dk
12+dk

23+dk
31. The condition for a flat

�k-independent� band is obtained by setting the overall factor
of q�k� in P�E� to zero,

g2�̄+�−E + g3��+
2�− + �̄+�̄−

2� = 0, �3�

which is equivalent to

E = − g��+
3 + �̄−

3� . �4�

Combining Eqs. �2�–�4� gives the following equation for the
energy eigenvalues of the flat bands:

E�E − 4g2� = 0, �5�

which has three possible solutions:
�a� E=0 flat band: this configuration is achieved for �+

+�−=� �mod 2��,
�b� E=−2g flat band: this configuration is achieved for

��=2�n�, with n� integer valued numbers, and
�c� E=2g flat band: this configuration is achieved for

��=��2n�+1�, with n� integer valued numbers.
The cases E= �2g �type III� are similar to those dis-

cussed in Refs. 9–11, where the flat band touches a parabolic
electron-like band at its bottom �for E=−2	g	� or a hole-like
band at its top �for E=+2	g	�. Here, we shall focus instead in
the case where the flat band is at E=0. In Fig. 1 �types I and
II� we show two particular choices for ��, which are repre-
sentative of what we classify as types I and II spectra. Type
I contains a cone vertex touching at the point k=0, which we
illustrate by setting �+=3� and �−=0 �this choice of phase
can be interpreted as tight-binding hoppings −g for up tri-
angles and +g for down triangles�. Type II contains an iso-
lated flat band, which we illustrate by setting ��=3� /2 �this
choice can be interpreted as tight-binding matrix elements
�ig for hopping anticlockwise or clockwise around the tri-
angles�. Notice that because tr Hk=0 and one of the eigen-
values is E=0, the other two eigenenergies must satisfy
E+�k�+E−�k�=0, so the spectrum is symmetric with respect
to zero in both types I and II.

The general condition for nodal touching �type I� can be
obtained by requiring that there is another E=0 eigenvalue,
so that at least one other band touches the flat band. When
such a solution exists, the derivative of the characteristic
polynomial P��E� also has a zero at E=0 for some value of
k. This condition translates to

a1�k� = 0 ⇒ �̄+�−q�k� = − 3, �6�

which admits three different solutions:
�A� Nodal point at �= �0,0�: this type I configuration is

obtained if the condition �+−�−=3�+6�n is satisfied,
where n is an integer, and it is illustrated in Fig. 1 �type I�,

�B� Nodal point at k=K+= � 4�

3�3
,0�: this type I configura-

tion is obtained if the condition �+−�−=5�+6�n is satis-
fied, where n is an integer, and

�C� Nodal point at k=K−= �− 4�

3�3
,0�: this type I configu-

ration is obtained if the condition �+−�−=�+6�n is satis-
fied, where n is an integer.

Even though types I and II are particle-hole symmetric
with a flat band at E=0 and have staggered fluxes obeying

the constraint �++�−=� �mod 2��, type II lacks the nodal
conditions �A�–�C� mentioned above.

A. Nodal touching and the spin-1 cone

Let us now expand the Hamiltonian, in type I, near the
vertex point for small 	k	=�kx

2+ky
2. At the same time we

move into type II by applying a slight flux offset from the
condition for the touching: �+=3��+�� and �−=−3�. We
will interpret � as a “mass” term. To first order in � and k the
Hamiltonian becomes

Hk = g
3
�2

kx Lx� + ky Ly� + 2�2

3
� Lz�� = g

3
�2

�kx,ky,m� · L��,

�7�

where m=2�2 /3�. It is straightforward to check that the ma-
trices

Lx� =
i

�6� 0 1 − 1

− 1 0 − 2

1 2 0
� , �8a�

Ly� =
i

�2� 0 1 1

− 1 0 0

− 1 0 0
� , �8b�

Lz� =
i

�3� 0 − 1 1

1 0 − 1

− 1 1 0
� �8c�

satisfy the angular momenta algebra �Lx� ,Ly��= iLz� �along
with the cyclic permutations of x, y, and z�, and that they
have eigenvalues −1,0 ,+1, i.e., they form a spin-1 represen-
tation of SU�2�.

The eigenvalues of the Hamiltonian �7� are Ek

=g 3
�2

�kx
2+ky

2+m2�k, where �k=−1,0 ,+1 is the eigenvalue of
angular momentum along the direction �kx ,ky ,m�. Therefore,
we obtain the three bands, with the flat band being the one
with zero angular momentum. The other two bands describe
the cone when �=0, and two parabolic bands separated from
the flat band by a gap �=g2�3� when � is nonzero. �A
particular instance of the �=0 spectrum has recently also
been predicted in T3 optical lattices by Bercioux et al.15�

The spin-1 structure has interesting topological properties,
namely, it can be viewed as a generalization of the Berry
phase for the spin-1/2 spectrum of graphene. One implication
is that, when the gap is open by breaking TRS, the upper and
lower bands have a quantized Hall conductance. In the Ap-
pendix we explicitly compute the Chern number over the
first Brillouin zone for the three bands.

B. Transitioning between electron and hole bands

We now consider deviations from the flat band condition
for the case when the middle band is isolated, as in type II.
For concreteness, consider the case �+=�−=3�� /2−	�. For
small 	, the energy of the middle band will be close to E
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=0, so we can obtain the dispersion for the middle band by
dropping the cubic term in the characteristic polynomial
P�E�,

E�k� = − g
a0�k�
a1�k�

+ O�	3� . �9�

Expanding a0�k�, a1�k� up to order 	k	2 and 	, one obtains

E�k� = g�4	 −
3	

4
	k	2 , �10�

corresponding to a band mass m	=−3	 /2g for the middle
band, so it has a hole-like dispersion for 	
0 and an
electron-like dispersion for 	�0, as depicted in Fig. 3. This
trivial mathematical result is physically remarkable in that
one can, in principle, change the character of a band from
electron-like to hole-like by varying one parameter in the
Hamiltonian.

Notice that there is also a band shift 4	g, which adds to
the chemical potential. There is an interesting result when the
chemical potential is fixed to �=0: the Fermi surface is
pinned and independent of 	. It is best to see this effect prior
to any perturbation in 	 or expansion in 	k	. The Fermi sur-
face is in this case the locus of k points for which P�E=0�
=0, those that satisfy a0�k�=0. For the electron-like case, the
Fermi sea is in the region bounded by the a0�k�=0 surface
that contains the � point, whereas for the hole-like case the
Fermi sea is the complementary region in the Brillouin zone.
The anomalous Hall effect is given by the integral of the
Berry curvature over the Fermi sea. As we show in the Ap-
pendix, the Chern number, the Berry curvature integrated
over the complete Brillouin zone, for the middle flat band is
zero. This means that the sum of the anomalous Hall effects
for the electron-like and hole-like Fermi seas is zero. Thus,
as one tunes across holding �=0, the anomalous Hall effect
will change sign. Of course, by tuning � one can vary the
anomalous Hall effect continuously.

C. Time-reversal and particle-hole symmetries

First, we discuss time-reversal symmetry. Consider a
tight-binding model of spinless fermions described by

H = �
k

i
†�k�Hij�k� j�k� , �11�

where  is an annihilation fermionic operator and k takes
values on the first Brillouin zone. Under time-reversal trans-
formation,

H → �
k

i
†�− k�Hij

� �k� j�− k� = �
k

i
†�k�Hij

� �− k� j�k� .

�12�

For H to be time-reversal invariant, one way would be to
have H�k�=H��−k�. Looking at our Hamiltonian more care-
fully, though, we see that there is a freedom to redefine the
hopping matrix elements without changing the fluxes �+ and
�−. This freedom can be mathematically described by the
following gauge transformation:

H�k� → H̃�k� = �H�k��†, �13�

where

� = �ei�1 0 0

0 ei�2 0

0 0 ei�3
� . �14�

Hamiltonians H�k� and H̃�k� related by the gauge transfor-
mation �13� represent physically equivalent descriptions of
the system. The requirement of time-reversal symmetry, tak-
ing into account the gauge invariance given by Eq. �13�,
becomes then

H�k� = �H��− k��†, �15�

from which we get the following conditions:

e�2i/3��� = ei��1−�2� = ei��2−�3� = ei��3−�1�. �16�

Equation �16� immediately implies that symmetry under time
reversal is satisfied if �+=n+� and �−=n−�, for integers n+
and n− such that n+−n−=3l �l integer�. This is exactly
equivalent to the condition for �� such that the spectrum has
a gapless flat band at E=0, i.e., type I. Therefore, we con-
clude, for this given model, that in order to have an isolated
flat band time-reversal symmetry must be broken.

Now consider particle-hole symmetry. The key observa-
tion is the following: when the spectrum of H has three
bands, as in the kagome lattice, particle-hole symmetry only
exists when there is a flat band at E=0 and the two other
bands have opposite energies. We have already worked out
the conditions for the existence of a flat E=0 band in the
kagome lattice to be �++�−=�, which also dictates the con-
ditions for particle-hole symmetry �if the Hamiltonian is a
traceless matrix�. Notice that H can be particle-hole symmet-
ric without being time-reversal invariant. �A spin-1 cone is a
situation where both symmetries are present.� We will use
this important aspect later when we calculate the Chern num-
ber of the bands.

III. HEXAGONAL LATTICE MODEL

Having discussed the main properties of the kagome
model, we now consider an alternative model defined on the

(a) (b)

FIG. 3. �Color online� Left �right�: middle band showing
electron-like �hole-like� dispersion corresponding to 	�0 �
0� in
Eq. �10�.
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hexagonal lattice. We will show that these models are closely
related and that the kagome model is a limiting case of the
hexagonal one. Even more interestingly the spectrum of the
hexagonal model contains two parallel flat bands that are
separated from each other and from all other bands by a gap.

A. Definition of the model

Consider a tight-binding model on a hexagonal lattice,
where the particles have three flavors. Define the six-
dimensional basis of particle operators �a,�

† ,b,�
† �, where

�=1,2 ,3 is the flavor index, and a ,b are the two sublattices.
In real space the Hamiltonian is

H = t �
�ab�;�

a,�
† h��rb − ra�b,� + H.c.

+ g �
a,b;�,�

a,�
† B���+a,� + b,�

† B���−b,� + H.c.

�17�

The first term �coupling t� is a nearest-neighbor hopping be-
tween the two sublattices that conserves the flavor index, but
has correlated flavor-direction hopping controlled by h�,

h��rb − ra� = �1, rb − ra = s�

0, otherwise.
� �18�

The second term �coupling g� is the on-site phase dynamics,
where B is the 3�3 cyclical permutation matrix,

B = �0 1 0

0 0 1

1 0 0
�, B2 = B†, B3 = 1 , �19�

and the on-site flavor changing phase factors are ��=ei��/3

�using the notation of Sec. II�. In other words, intersite hop-
ping conserves the flavor index. Flavors can be permuted on
site, and each permutation is accompanied by an on-site
phase factor ��. This Hamiltonian can be diagonalized ana-
lytically for particular values of ��.

B. Equivalence to the kagome model

Let us write the wave function basis as
�a,1

† ,b,1
† ,a,2

† ,b,2
† ,a,3

† ,b,3
† � and work in momentum

space. In this basis, our Hamiltonian takes the following six-
dimensional form:

Hk = �T1 G G†

G† T2 G

G G† T3
� , �20�

where

T� = t� 0 eik·s�

e−ik·s� 0
, G = g��+ 0

0 �−
 . �21�

In the extreme case when g=0, H is block diagonal in the
T matrices and is trivial. It has two triply degenerate eigen-
values E= � t and eigenvectors v�,�

† �k�= �1, �eik·s�� /�2.
This corresponds to a “dimerized” state since the particles

cannot hop between sublattices. �Recall that hoping between
sublattices is directionally controlled by the flavor, so if the
particles are not allowed to change flavor in the vertices be-
cause g=0, they can only hop back and forth within a given
bond between an a and a b site.�

Now project the full Hamiltonian to the lowest energy
states, E=−t, and expand to first order in g / t. The projected

Hamiltonian H̄ is given by the matrix elements H̄��

=v�,−
† Hv�,−. For example, H̄12�k�=g��++dk

12�−� /�2, and so

on. The result is that H̄�k� is identical to the Hk on the
kagome lattice in Sec. II, up to an overall additive energy −t.

To check the equivalence explicitly, let us solve the
Hamiltonian at one particular choice of fluxes: �+=�−=0,
for example. In this case the spectrum is given by

E = � t − g , �22�

E =
g

2
�

1

2
�4t2 + 9g2 � 4tg�3 + q�k� + q̄�k� . �23�

To first order in g / t the eigenvalues above reduce to

E = − t − g , �24�

E = − t +
g

2
�1 � �3 + q�k� + q̄�k�� , �25�

and similarly with t→−t. This is exactly the spectrum of a
kagome tight-binding model in zero field, or type III in our
nomenclature, confirming that the kagome model is a limit of
the hexagonal model. Note that in this particular case, where
time-reversal symmetry is not broken, the flat bands touch
parabolically at k=0, as discussed before in Sec. II. In fact,
in the exact solution in Eqs. �22� and �23� for all values of g
and t the flat bands are not gapped for the same reason.16

C. Parallel flat bands

There is a rather interesting configuration of parameters
for which the spectrum contains two distinct flat bands. As in
the kagome model, breaking of time-reversal symmetry is
required to create gapped flat bands. We thus break time-
reversal symmetry and choose the phases �+=�−=3� /2.
Further, we tune the interactions such that g= ��3 /2�t. The
spectrum for this Hamiltonian is shown in Fig. 4. Notice that,
remarkably, because of the two flat bands even nonzero mo-
menta particle-hole excitations in this system would have
macroscopic degeneracy, and exotic heavy excitons could be
formed.

We close this section by noting that there is at least one
other hexagonal model where this parallel band structure can
be induced by breaking time-reversal symmetry. Wu and Das
Sarma recently studied ground-state properties of interacting
spinless fermions in the px,y-orbital bands in the two-
dimensional honeycomb optical lattice.17 They considered a
�-bonding interaction, which describes hopping between p
orbitals on neighboring sites when the orbitals are oriented
along the bond direction. They found gapless flat bands since
their model does not break time-reversal symmetry. How-
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ever, we would like to point out that one can add to their
model a time-reversal symmetry breaking interaction, on
site, between the px and py orbitals of the form gi�px

†py
− py

†px�. Just as in our example, parallel flat bands appear
when g is tuned to a special multiple of the hopping strength
t.

IV. SUMMARY

Dispersionless bands can be the starting point for con-
structing strongly correlated electronic states. The lack of
electron kinetic energy leads to a macroscopic degeneracy
when dispersionless bands are partially filled, and interac-
tions become responsible for lifting the degeneracy and se-
lecting the many-body ground state. This situation is the case
for Landau levels, which are flat bands created by an external
magnetic field.

In this paper, we have analyzed different types of spectra
that contain flat bands in tight-binding systems in the pres-
ence of staggered fluxes. We have seen that it is possible to
separate a flat band from the other bands by a gap when
time-reversal symmetry is broken. In these situations, the flat
band can be viewed as a critical point �with zero curvature�
that separates electron-like from hole-like bands, and we can
switch between these two curvatures by changing parameters
in the Hamiltonian. When the gap is closed and the flat band
lies between two other bands, one obtains a spin-1 conical
spectrum, extending to higher angular momentum the spin-
1/2 Dirac-like spectra in topological insulators and in
graphene.

We have also presented examples of tight-binding systems
where it is possible to obtain more than one isolated flat
band. Specifically, we showed examples with two isolated
parallel flat bands.

Although we made progress in understanding several as-
pects of flat bands, two points remain as open questions and
deserve further investigation. First, we do not have a generic
proof that time-reversal symmetry must be broken to isolate
a flat band. Nonetheless, it is natural to speculate that this is

true in general, as it holds in all examples that we have
found, in addition to the well-known case of Landau levels.
And, second, in all examples discussed here as well as in a
class of tight-binding models defined on a line graph,18 the
flat bands have zero Chern number. Whether this is an intrin-
sic property of these bands remains unclear to us. If it is
possible, however, to find examples of flat bands with non-
zero Chern number in the absence of an external magnetic
field, this could be an interesting scenario for realizing
strongly correlated electronic states with topological order.

Note added in proof. Recently, we learned of a promising
realization of flat band systems by Koch et al. using circuit-
QED based photon lattices.22
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APPENDIX: CHERN NUMBERS FOR BANDS IN THE
STAGGERED FLUX SYSTEM

Haldane19 showed in a seminal paper that it is possible for
a system to exhibit the quantum Hall effect without Landau
levels provided the system breaks TRS. Recently, in the con-
text of the anomalous quantum Hall effect, Ohgushi et al.8

proposed a three-band model with electrons hopping in a
kagome lattice in the presence of a background spin texture.
In their model, the spin texture opens a gap in the spectrum
and gives rise to a Berry phase such that the Chern numbers
of the bands are 1 ,0 ,−1 when TRS is broken. In this appen-
dix we compute explicitly the Chern numbers in the type II
spectrum of our kagome model.

Recall that when �++�−=� and �+−�−=3� we have a
flat band with a Dirac point as shown in Fig. 1. For this
choice of fluxes, as discussed previously, the Hamiltonian is
time-reversal invariant and the system presents no Hall re-
sponse �type I�. However, when the flat band is maintained
but a gap is opened, time-reversal invariance is lost and we
have the possibility of bands with nonzero Chern numbers
�type II�. We parametrize the gap by a mass term �, such that
the fluxes �+=2�+� and �−=−�−�. �=0 corresponds to a
Dirac cone at the center of the BZ. For reference we give the
complete energy spectrum, although we will expand around
small k� below: E�= ��f�k� and E0=0, where f�k�=6
−2�i,j cos�k · �s j −si�−2� /3�, and the summation is over the
cyclic permutations �i , j�= �1,2�, �2,3�, and �3,2�.

The Chern number of the nth band is defined as the sum-
mation over the first BZ,

Cn =
− i

2�
�

m�n,k�BZ

�nk	Jx	mk��mk	Jy	nk� − �Jx ↔ Jy�
�En�k� − Em�k��2

=
1

2�
�

k�BZ

�k � A� n�k� =
1

2�
�

k�BZ

Bn�k� . �A1�

Here, Bn�k� is the field strength associated with the Berry
vector field A� n�k�=−i�nk	�k	nk� and J= �Jx ,Jy� is the cur-

FIG. 4. �Color online� Exact spectrum for t=1, g=�3 /2, and
��=3� /2.
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rent operator given by J=�kH. One can see that �nCn=0 by
the antisymmetry of Cn as x and y are interchanged. Because
the Chern numbers of the bands are topological
quantities,20,21 their values can only change when a band
touching occurs. Choosing � to be very small, an arbitrarily
small gap m�� is opened �still keeping the flat band� and a
near degeneracy appears for k�0. Around this point, the
Hamiltonian is that of a spin-1 system with Hk�kxLx
+kyLy +mLz.

To perform the summation explicitly it is
convenient to define the vector f��kx ,ky ,m�
�	f	�sin � cos � , sin � sin � , cos ��, which can be viewed as
a magnetic field in momentum space coupled to the spin
operator �cf., Berry14�. First, we compute the eigenvectors of
Hk with the respect to the z axis and then we apply a rotation
to bring the spin states to an arbitrary �� ,�� direction. Let
�	�+� , 	�0� , 	�−�� be the eigenstates of Lz with eigenvalues
1 ,0 ,−1 respectively. The eigenvectors of Hk in a general
direction �� ,�� are given by

	n� = e−i�Lze−i�Ly	�n� , �A2�

with n=+,−,0, which in explicit form reads

	+� = �e−i��1 + cos �

2
 ,

sin �

�2
, ei��1 − cos �

2
 � ,

�A3a�

	0� = �− e−i�sin �

�2
, cos � , ei�sin �

�2
� , �A3b�

	−� = �e−i��1 − cos �

2
 , −

sin �

�2
, ei��1 + cos �

2
 � ,

�A3c�

and Hk	��= ��	k	2+m2	�� and Hk	0�=0. A straightfor-
ward calculation of the field strengths gives us

B��k� = �
m

�m2 + 	k	2�3/2 , B0�k� = 0. �A4�

The contributions of these fluxes to the Chern numbers are
found to be �sgn�m� and zero. We have also confirmed this
result numerically over the entire BZ without linearizing
around the � point. As we cross the gap, � �equivalently, m�
changes sign and the Chern numbers of the upper and lower
bands change sign as well, while the Chern number of the
flat band remains zero. Because of the topological nature of
the Chern numbers, their values will remain unaltered until a
new band touching occurs, which will happen for �= ��,
when the Dirac point moves to one of the corners of the BZ.
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endow the spectrum with dispersionless bands.

6 H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 �1981�.
7 E. Dagotto, E. Fradkin, and A. Moreo, Phys. Lett. B 172, 383

�1986�.
8 K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62,

R6065 �2000�.
9 D. L. Bergman, C. Wu, and L. Balents, Phys. Rev. B 78, 125104

�2008�.
10 Y. Xiao, V. Pelletier, P. M. Chaikin, and D. A. Huse, Phys. Rev.

B 67, 104505 �2003�.
11 C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev.

Lett. 99, 070401 �2007�.
12 H.-M. Guo and M. Franz, Phys. Rev. B 80, 113102 �2009�.
13 F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 �2004�.
14 M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 �1984�.
15 D. Bercioux, D. F. Urban, H. Grabert, and W. Häusler, Phys.

Rev. A 80, 063603 �2009�.
16 We speculate that the flat band arises from the property of the

on-site interaction in the hexagonal Hamiltonian, B2=B†. This
would be a generalization of Straley’s result for amorphous

semiconductors, where the intracluster hopping satisfies Â2= Â,
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